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Abstrakt 

Článek analyzuje možnosti a limity využití modelů GPT-4o, Microsoft Copilot a Gemini 

2.0 Flash v geometrické přípravě budoucích učitelů 1. stupně ZŠ. Výzkum se zaměřil na 

schopnost AI generovat metodické podklady v oblastech trojúhelníkové nerovnosti 

a inkluzivního pojetí klasifikace objektů (čtverec jako obdélník). 

Výsledky potvrzují vysokou logickou integritu modelů při detekci logických nesrovnalostí, 

což z nich činí efektivní nástroj pro brainstorming a přípravu podkladů. Limitem zůstává 

didaktická terminologie ovlivněná anglosaskou symbolikou a potenciální riziko izolovaného 

chápání pojmů u méně pokročilých modelů. Studie zdůrazňuje nutnost rozvoje kompetencí 

TPACK; role studenta se mění z tvůrce na expertního korektora garantujícího kvalitu výstupů 

pro českou školní praxi. 

 

Klíčová slova: umělá inteligence (AI), velké jazykové modely (LLM), logická integrita, 

inkluzivní pojetí pojmů, TPACK, geometrická prekoncepce, konstrukční geometrie 

 

OPPORTUNITIES AND LIMITS OF LLMS IN THE GEOMETRIC 

PREPARATION OF PRE-SERVICE PRIMARY SCHOOL TEACHERS 

 
Abstract 

The article analyzes the potential and limits of GPT-4o, Microsoft Copilot, and Gemini 2.0 

Flash in the geometric preparation of pre-service primary teachers. The research focuses on AI's 

ability to generate materials for teaching triangle inequality and inclusive concept classification. 

Results confirm the high logical integrity of the models in detecting mathematical 

contradictions. Limitations include terminology influenced by Anglo-Saxon conventions and 

the risk of isolated understanding of concepts. The study emphasizes developing TPACK 

competencies; the student's role shifts from creator to expert proofreader ensuring the quality 

of AI outputs for Czech educational practice. 

 

Keywords: Artificial Intelligence (AI), Large Language Models (LLM), Logical Integrity, 

Inclusive Concept Classification, TPACK Framework, Geometrical Misconceptions, 

Constructive Geometry. 

 

 

1. Úvod 

Nástup velkých jazykových modelů (Large Language Models, LLM) do oblasti vzdělávání 

představuje jednu z nejvýznamnějších technologických změn v didaktice za poslední desetiletí. 

V kontextu vysokoškolské přípravy budoucích učitelů 1. stupně základních škol se tyto 
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nástroje, jako jsou ChatGPT, Copilot, Claude či Gemini, stávají stále častěji využívaným 

doplňkem samostudia a přípravy na výuku. Specifikem učitelství pro primární stupeň je přitom 

nutnost transformovat komplexní matematické znalosti do didakticky uchopitelných a věcně 

správných forem. 

Matematická složka přípravy budoucích učitelů je v tomto směru klíčová. Geometrie, jako 

jedna z hlavních oblastí primární matematiky, klade vysoké nároky nejen na precizní 

terminologii, ale především na schopnost algoritmického myšlení při konstrukčních úlohách. 

Zatímco v aritmetických úlohách mohou LLM vykazovat vysokou míru úspěšnosti díky 

integraci výpočetních modulů, v oblasti elementární geometrie narážejí na své limity. Tyto 

limity jsou dány především textovou povahou modelů, které postrádají reálnou prostorovou 

představivost a vizuální ukotvení geometrických objektů v rovině. 

Předkládaný článek se zaměřuje na kritickou analýzu věcné správnosti výstupů tří 

vybraných LLM modelů při generování materiálů pro výuku elementární geometrie. 

Výzkumným záměrem není pouze zhodnotit aktuální technickou vyspělost těchto nástrojů, 

ale především upozornit na rizika spojená s jejich nekritickým využíváním v pregraduální 

přípravě. Pokud budoucí učitelé využívají AI jako kognitivní nástroj k osvěžení vlastních 

znalostí, stává se věcná správnost (tzv. mathematical correctness) a didaktická integrita 

generovaného obsahu klíčovým faktorem pro kvalitu budoucí výuky a prevenci vzniku 

matematických miskoncepcí u žáků mladšího školního věku. 

Cílem studie je prostřednictvím komparativní obsahové analýzy identifikovat typické 

chyby a halucinace, kterých se modely v oblasti elementární geometrie dopouštějí a navrhnout 

doporučení pro efektivní a bezpečné zapojení těchto nástrojů do didaktické přípravy studentů 

učitelství. 

 

2. Teoretická východiska 

2.1. Role technologií v přípravě budoucích učitelů 

V procesu pregraduální přípravy učitelů primárního stupně již není otázkou, zda 

technologie využívat, ale jak je integrovat smysluplně a s ohledem na didaktické cíle. Jedním 

z nejcitovanějších teoretických modelů, který tento proces popisuje, je rámec TPACK 

(Technological Pedagogical Content Knowledge). Tento model zdůrazňuje, že efektivní výuka 

s technologiemi nevyžaduje pouze izolované znalosti obsahu (matematiky), pedagogiky 

a technologií, ale především jejich dynamické propojení (Koehler et al., 2013). 

Rámec TPACK zdůrazňuje technologické znalosti (TK), tedy konkrétních nástrojů, 

softwaru a hardwaru, pedagogické či didaktické znalosti (PK), tedy způsobů řízení výuky, 

vyučování a vedení žáků, a obsahové znalosti (CK), tedy oboru či vyučovaného učiva. Tyto 

oblasti se spojují a vytvářejí technologicko-pedagogické znalosti (TPK), které se týkají vztahu 

mezi technologiemi a pedagogickými postupy; pedagogicko-obsahové znalosti (PCK), 

zaměřené na pedagogické postupy a vzdělávací cíle; a technologicko-obsahové znalosti (TCK), 

které se týkají technologií a vzdělávacích cílů (Rosenberg & Koehler, 2015). 

V kontextu velkých jazykových modelů (LLM) dochází k zásadnímu posunu v nahlížení 

na složku technologické znalosti (TK). Tradiční digitální nástroje, jako je dynamický 

geometrický software GeoGebra, jsou ve své podstatě stabilní a „průhledné“, neboť vyžadují 

od učitele aktivní ovládání specifických funkcí pro rýsování. Naproti tomu digitální technologie 

typu LLM jsou, slovy Koehlera a Mishry (2013), „protean, unstable, and opaque“ (všestranné, 

nestabilní a neprůhledné). LLM modely vystupují v roli autonomního generátoru obsahu, čímž 

zásadně redefinují průnik technologické a obsahové složky (TCK). 

Zásadním východiskem této práce je, že efektivita didaktické transformace je přímo závislá 

na stabilitě složky obsahové znalosti (CK). Koehler, Mishra a Cain (2013) dále uvádějí, 

že technologie mají své specifické limity (constraints), které mohou ovlivnit reprezentaci 
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obsahu. Pokud budoucí učitel využije LLM k přípravě konstrukčního postupu, ale model 

vygeneruje matematicky chybný krok, dochází k destabilizaci celého rámce TPACK. 

V takovém případě technologie neusnadňuje učení, ale aktivně přispívá k tvorbě odborných 

chyb a didaktických miskoncepcí. 

Pro budoucího učitele 1. stupně je tedy klíčovou kompetencí tzv. kritická technologicko-

obsahová znalost. Ta nespočívá pouze v dovednosti vygenerovat pracovní list pomocí promptu, 

ale v následné validaci věcné správnosti generovaného obsahu. Učitel se zde stává 

„designérem“ kurikula (Koehler et al., 2013), který musí identifikovat oblasti, kde technologie 

přestává být matematicky přesná. V praxi to znamená, že učitel: 

1. Rozumí limitům nástroje: Vnímá LLM jako pravděpodobnostní prediktory textu, které 

jsou ze své podstaty náchylné k halucinacím (Frieder et al., 2023). 

2. Provádí věcnou validaci: Automaticky podrobuje každý výstup expertní kontrole dříve, 

než jej předloží žákům. 

3. Detekuje skryté chyby: Identifikuje větší i drobná metodická pochybení, například 

záměnu inkluzivního a exkluzivního vymezení pojmů, která je kritická pro správný 

vývoj geometrických představ (De Villiers, 1998). 

Bez této aktivní validační fáze se umělá inteligence stává zdrojem pedagogického šumu, 

který může negativně ovlivňovat kognitivní vývoj žáků v oblasti geometrické představivosti. 

 

2.2. Specifika geometrického vzdělávání na primárním stupni 

Geometrie v primárním vzdělávání nepředstavuje pouze soubor pouček o geometrických 

útvarech, ale tvoří základní pilíř pro rozvoj prostorové představivosti, logického usuzování 

a schopnosti pracovat s abstraktními modely reality. Jak uvádí Polák (2019), didaktika 

matematiky 21. století se soustředí na didaktickou transformaci obsahu tak, aby odpovídala 

poznávacím schopnostem žáků, přičemž efektivní využití digitálních technologií se stává 

jedním z hlavních cílů. Na rozdíl od aritmetiky, která je často procesem lineárním, je geometrie 

– a zejména její konstrukční část – procesem strukturálním a algoritmickým. Clements a Sarama 

(2007) zdůrazňují, že rozvoj geometrického myšlení úzce souvisí se schopností kompozice 

a dekompozice objektů, což dětem umožňuje budovat mentální koncepty vztahů mezi částí 

a celkem. Klíčovým teoretickým rámcem pro pochopení geneze těchto konceptů je teorie 

úrovní geometrického myšlení manželů van Hieleových. Van Hiele (1986, cit. dle Žilková, 

2013) tvrdí, že rozvoj geometrického myšlení probíhá v následujících pěti úrovních: 

• Úroveň 0: Vizualizace – rozpoznávání a pojmenovávání obrazců. 

• Úroveň 1: Analýza – popisování vlastností obrazce. 

• Úroveň 2: Neformální dedukce – klasifikace a třídění obrazců podle vlastností. 

• Úroveň 3: Dedukce – provádění důkazů za použití vět a definic. 

• Úroveň 4: Axiomatizace. 

Podle Vojkůvkové (2012) procházejí žáci těmito úrovněmi hierarchicky, přičemž každá 

úroveň disponuje specifickým jazykem a symbolikou. Žáci na 1. stupni ZŠ se typicky nacházejí 

v prvních dvou fázích: 

• Úroveň 0 (Vizualizace): Žáci rozpoznávají tvary jako celky na základě jejich celkového 

vzhledu (např. „toto je obdélník, protože vypadá jako dveře“). Na této úrovni jsou 

geometrické objekty vnímány bez hlubší analýzy jejich komponent (Vojkůvková, 2012). 

• Úroveň 1 (Analýza): Žáci začínají identifikovat jednotlivé vlastnosti útvarů (např. 

„obdélník má čtyři pravé úhly“), ale zatím mezi těmito vlastnostmi nechápou logické 

vazby a hierarchické uspořádání. 
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Přechod k vyšším úrovním vyžaduje tzv. procesuální správnost a precizní terminologii. 

Zatímco v aritmetice může být chyba v mezivýpočtu izolovaným jevem, v konstrukční 

geometrii má každá nepřesnost řetězový efekt. Pokud LLM vygeneruje chybný krok postupu 

(např. opomene specifikovat průsečíky kružnic), nejde pouze o technickou chybu, ale 

o didaktické selhání. Takový výstup může žáka v procesu budování mentálních schémat mást 

a vést k fixaci miskoncepcí. Vzhledem k tomu, že LLM pracují na principu textové predikce, 

nikoliv na základě prostorové logiky, nemůže se budoucí učitel spoléhat na jejich „intuitivní 

správnost“. Tato nebezpečná fixace nesprávných představ je hlavním důvodem, proč je 

geometrie v éře AI kritickým polem pro rozvoj profesních kompetencí učitele. 

Významným didaktickým úskalím, na které šetření poukázalo, je napětí mezi inkluzivním 

a exkluzivním vymezením pojmů. De Villiers (1998) upozorňuje, že žáci si často budují 

tzv. „konceptuální obrazy“ (concept images), které mohou být v přímém rozporu s formálními 

definicemi. Častým problémem v primárním vzdělávání je, že žáci i po seznámení se s definicí 

(např. rovnoběžníku) odmítají do této kategorie zařadit speciální případy jako čtverec 

či obdélník. Jejich vnitřní představa je příliš vázaná na prototypické zobrazení, což signalizuje 

setrvání na nižších úrovních geometrického myšlení (Vojkůvková, 2012). 

Zatímco moderní didaktika preferuje inkluzivní přístup (např. čtverec je speciálním 

případem obdélníku, jehož všechny strany mají stejnou délku), v praxi se učitelé potýkají 

s rezistencí žáků preferujících exkluzivní chápání (čtverec v tomto pojetí není obdélníkem). 

Schopnost inkluzivní klasifikace je přitom znakem dosažení úrovně abstrakce (2. úroveň dle 

van Hieleho), kde žáci začínají chápat logické vazby mezi vlastnostmi útvarů (De Villiers, 

1998). Pokud LLM modely v generovaných metodických materiálech tyto dva přístupy 

nekriticky kombinují, mohou u budoucích učitelů prohlubovat terminologickou nejasnost. To 

potvrzuje naléhavost požadavku, aby pregraduální příprava kladla důraz na hlubokou oborově-

didaktickou erudici jako jedinou funkční pojistku proti technologicky generovaným chybám 

(Polák, 2019). 

 

2.3. Limity LLM v matematickém uvažování 

Aby bylo možné kriticky zhodnotit kvalitu výstupů generovaných umělou inteligencí, je 

nezbytné porozumět klíčovému rozdílu mezi lidským matematickým uvažováním a principem 

fungování velkých jazykových modelů (LLM). 

Navzdory schopnosti generovat jazykově kultivované a přesvědčivé texty, LLM v jádru 

nepředstavují systémy založené na pravidlech symbolické logiky. Jak uvádějí 

Huang et al. (2023), jedná se o pravděpodobnostní prediktory, které generují obsah na základě 

statistických korelací v trénovacích datech, nikoliv na základě vnitřního porozumění faktům 

nebo logickým zákonitostem. Zatímco lidský řešitel při řešení geometrické úlohy vychází 

z axiomů a logických odvození, LLM modely konstruují odpověď skládáním tokenů (částí 

slov). Tento proces je náchylný k selhání zejména v úlohách vyžadujících tzv. vícekrokové 

uvažování (tzv. logická integrita). 

Frieder et al. (2023) ve své analýze matematických schopností modelů ChatGPT 

zdůrazňují, že geometrický konstrukční postup je typickým příkladem řetězce vzájemně 

závislých kroků. V takovém algoritmu má každá instrukce striktní návaznost na kroky 

předcházející; pokud model chybuje v definici výchozího bodu nebo vlastnosti úsečky, celá 

následná struktura postupu se logicky hroutí. Tato dekonstrukce logické cesty se často děje pod 

povrchem gramaticky bezchybného a terminologicky bohatého textu. Tento nesoulad mezi 

formální kvalitou jazyka a vnitřní nelogičností obsahu se označuje jako „halucinace“. Huang 

et al. (2023) definují halucinace jako generování obsahu, který je věcně nesprávný nebo 

v rozporu se zadaným kontextem. 

92



Elementary Mathematics Education Journal                                                 2025, Vol. 7, No. 2 

ISSN 2694-8133 

 

V geometrii nejde o náhodné generování slov, ale o neschopnost modelu pracovat 

s prostorovými vztahy, které popisuje. Model postrádá „vnitřní geometrický svět“; může tedy 

s vysokou mírou jistoty tvrdit, že bod je průsečíkem dvou přímek, které jsou však podle jeho 

vlastního zadání rovnoběžné. Tento fenomén potvrzuje tezi Koehlera a Mishry (2013) 

o „neprůhlednosti“ (opaqueness) moderních technologií, kdy uživatel snadno podlehne iluzi 

kompetence stroje. Pro budoucího učitele je pochopení tohoto limitu zásadní pro rozvoj jeho 

profesních kompetencí. Musí si být vědom, že LLM nevykazuje „pochopení“ matematické 

pravdy, ale pouze vysokou míru pravděpodobnosti textové shody. Znalost tohoto 

technologického omezení je základním stavebním kamenem kritické technologicko-obsahové 

znalosti (TCK). Umožňuje studentovi přistupovat k nástroji nikoliv jako k neomylné autoritě, 

ale jako k „unstable“ partnerovi (Koehler et al., 2013), jehož výstupy vyžadují permanentní 

expertní supervizi.  

V kontextu těchto limitů tak paradoxně vyvstává naléhavější potřeba hluboké oborově-

didaktické přípravy. Právě vysoká úroveň matematické erudice a schopnost provádět věcnou 

validaci (Polák, 2019) se stávají nezbytným předpokladem pro bezpečné a smysluplné 

využívání umělé inteligence v primárním vzdělávání. 

 

2.4. Halucinace a jejich typologie v kontextu matematického uvažování 

Huang et al. (2023) definují halucinace v prostředí LLM jako generování fakticky 

nesprávných, nelogických nebo s kontextem nekonsistentních tvrzení, která jsou však modelem 

prezentována s vysokou mírou lingvistické sebejistoty.  

V oblasti matematického uvažování se tyto chyby projevují kriticky zejména v procesech 

vícekrokového odvozování (logická integrita). Jak uvádějí Frieder et al. (2023), 

u geometrických úloh, kde je výsledek podmíněn precizní sekvencí logických operací, dochází 

k tzv. kaskádovému selhání – každý chybný krok v algoritmu destabilizuje celou následnou 

strukturu. Na základě analýzy geometrického obsahu lze definovat tři specifické typy 

halucinací:  

1. Halucinace logické (axiomální) 

Tento typ představuje porušení základních geometrických axiomů a zákonitostí. Model 

například navrhne konstrukční postup pro trojúhelník, jehož délky stran neodpovídají 

trojúhelníkové nerovnosti, nebo operuje s objekty v euklidovském prostoru, které vykazují 

vnitřně rozporné vlastnosti. Frieder et al. (2023) upozorňují, že modely často „přeskakují“ 

logické vazby a nahrazují je statisticky pravděpodobnými, leč matematicky nemožnými 

tvrzeními.  

2. Halucinace terminologické (lingvistické) 

Dochází k nesprávnému užití odborných pojmů, což je v geometrii 1. stupně ZŠ zvláště 

rizikové. Jde například o záměnu pojmů „kružnice“ a „kruh“ nebo „úsečka“ a „přímka“. 

Z pohledu van Hieleho teorie (Vojkůvková, 2012) tyto halucinace narušují integritu jazyka 

dané úrovně myšlení. Pokud model užívá terminologii úrovně analýzy (1), ale kombinuje ji 

s chybnými definicemi, vytváří u budoucího učitele falešný dojem odborné správnosti, který 

může vést k fixaci didaktických chyb (De Villiers, 1998).  

3. Halucinace reprezentační (prostorové) 

Tyto chyby se týkají chybných popisů prostorových vztahů a vzájemných poloh objektů. 

Typickým příkladem je tvrzení o existenci průsečíku u přímek, které model v tomtéž textu 

definoval jako rovnoběžné. Jelikož LLM postrádají schopnost vizuální reprezentace 

a prostorové představivosti, kterou Clements a Sarama (2007) považují za základ 

geometrického poznání, jejich „popis prostoru“ je pouze syntaktickou konstrukcí bez 

sémantického ukotvení v realitě. Tato typologie rozšiřuje obecnou taxonomii Huang et al. 
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(2023) o nezbytnou didaktickou dimenzi. Pro pregraduální přípravu učitelů z toho vyplývá, že 

identifikace halucinací není pouze technickou dovedností, ale vyžaduje vysokou úroveň 

oborové kompetence. Bez schopnosti rozeznat logickou nekonzistenci od terminologické 

nepřesnosti nemůže učitel efektivně plnit roli tvůrce a validátora výuky a výukových materiálů 

v digitálním věku (Koehler et al., 2013). 

 

3. Metodologie a design šetření 

Cílem praktické části studie je provést komparativní analýzu schopností vybraných 

systémů umělé inteligence generovat metodicky správné a věcně bezchybné podklady 

pro výuku konstrukční geometrie na primárním stupni. Výzkumný design reflektuje rámec 

TPACK (Koehler et al., 2013), přičemž se zaměřuje na kritické posouzení průniku 

technologické a obsahové složky (TCK) v situaci, kdy technologie (LLM) přebírá roli 

autonomního tvůrce didaktického obsahu. 

 

3.1. Výzkumné otázky 

Vzhledem k teoretickým východiskům o limitech matematického uvažování LLM (Frieder 

et al., 2023) a didaktickým specifikům geometrického vzdělávání (Vojkůvková, 2012) jsme si 

stanovili následující výzkumné otázky: 

• VO1: Jaká je míra věcné (matematické) správnosti konstrukčních postupů 

generovaných vybranými modely v kontextu stability složky Content Knowledge? 

• VO2: Jaké typické formy halucinací (logické, terminologické, reprezentační) se 

v generovaných textech vyskytují v souladu s taxonomií Huang et al. (2023)? 

• VO3: Do jaké míry reflektují generované výstupy inkluzivní pojetí geometrických 

pojmů (např. hierarchický vztah čtverce a obdélníku) odpovídající moderní didaktice 

(De Villiers, 1998)? 

 

3.2. Charakteristika zkoumaných LLM nástrojů 

Pro účely komparativní analýzy byly vybrány tři reprezentativní systémy, které aktuálně 

dominují trhu s generativní umělou inteligencí a vykazují nejvyšší míru integrace 

do akademického a školního prostředí. Výběr reflektuje technologickou variabilitu, kterou 

Koehler a Mishra (2013) označují za „unstable and opaque“, a zahrnuje různé přístupy 

k integraci TK: 

1. OpenAI ChatGPT (model GPT-4o) 

Tento model byl zvolen jako globální referenční standard multimodálního systému 

s nejvyšší deklarovanou úrovní logického uvažování. Pro budoucí učitele představuje primární 

nástroj pro generování komplexních struktur, u něhož se předpokládá nejpokročilejší schopnost 

vícekrokového odvozování (logická integrita), kritického pro geometrické konstrukce (Frieder 

et al., 2023). 

2. Microsoft Copilot (režim „Precise“) 

Nástroj byl zařazen jako reprezentant institucionální sféry, neboť je plošně integrován do 

ekosystému Microsoft 365 na většině českých univerzit a škol. Z pohledu rámce TPACK 

představuje technologii, se kterou budoucí učitelé pracují v rámci oficiálních licencí. Nastavení 

na režim „vysoké přesnosti“ bylo zvoleno záměrně, aby bylo možné sledovat stabilitu obsahové 

složky (CK) při potlačení kreativních složek modelu.  

3. Google Gemini (model 2.0 Flash) 

Reprezentant nejnovější generace agilních modelů optimalizovaných pro rychlou odezvu 

a efektivitu v rámci Google Workspace. Jeho zařazení umožňuje sledovat, jak si v náročných 
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úlohách konstrukční geometrie vedou modely s nižší výpočetní náročností, které jsou však 

masivně rozšířeny mezi žáky i učiteli na základních školách v ČR. Tato trojice nástrojů 

poskytuje komplexní pohled na aktuální technologické možnosti a limity. Analýza jejich 

výstupů umožní identifikovat, zda a do jaké míry vyžadují tyto „protean“ technologie (Koehler 

et al., 2013) od učitele specifické validační kompetence pro zachování didaktické kvality výuky 

geometrie. 

 

3.3. Formulace testovacích úloh 

Abychom zaručili objektivitu výzkumu a eliminovali vliv kontextového učení, využili jsme 

metodu tzv. zero-shot promptingu. Tyto prompty byly navrženy bez doplňujících nápověd, aby 

simulovaly běžný scénář, kdy student učitelství využívá technologii k rychlé přípravě na výuku. 

Prompt P1: Test základního algoritmu a existenčních podmínek 

• Zadání: „Ahoj, jsem student učitelství a připravuji si podklady pro výuku geometrie na 

1. stupni ZŠ. Napiš mi prosím podrobný postup konstrukce trojúhelníku ABC, který má 

strany o délkách: a = 6 cm, b = 3 cm, c = 2 cm. Postup piš tak, aby byl srozumitelný pro 

žáka 5. třídy.“ 

• Sledovaný didaktický problém: Úloha testuje schopnost modelu identifikovat 

porušení trojúhelníkové nerovnosti (3 + 2 < 6). Správná odpověď, odpovídající hluboké 

obsahové znalosti (CK), musí obsahovat upozornění, že trojúhelník nelze sestrojit. 

Generování postupu bez této reflexe je klasifikováno jako logická halucinace 

(Huang et al., 2023) a kritické didaktické selhání. 

Prompt P2: Test pojmové hierarchie a inkluzivního myšlení 

• Zadání: „Ahoj, jsem student učitelství a připravuji si podklady pro svou praxi pro 

výuku geometrie na 1. stupni ZŠ. Napiš mi prosím podklad pro žáky 5. třídy na téma 

obvod obdélníku. Úkol: Najdi všechny možné obdélníky, které mají obvod 16 cm 

a délky jejich stran jsou celá čísla. Požadavky: 1. Vysvětli žákům postup, jak jsi řešení 

hledal. 2. Uveď, zda jsi vyčerpal všechny možnosti.“ 

• Sledovaný didaktický problém: Úloha primárně cílí na analýzu inkluzivního 

vs. exkluzivního vymezení pojmů. Jak uvádí De Villiers (1998), moderní didaktika 

vyžaduje, aby byl čtverec vnímán jako speciální případ obdélníku. Sledujeme, zda AI 

do výčtu variant (1 + 7, 2 + 6, 3 + 5, 4 + 4) zahrne i čtverec. Schopnost modelu toto 

ošetřit indikuje připravenost technologie podporovat rozvoj vyšších úrovní 

geometrického myšlení (2. úroveň – abstrakce dle van Hieleho). Sekundárně úloha 

testuje logickou integritu při hledání vyčerpávajícího počtu řešení. 

 

3.4. Metoda analýzy a testovací kritéria 

Všechny vygenerované výstupy byly podrobeny expertní analýze, která reflektuje průnik 

oborové didaktiky a technických limitů LLM. Hodnocení probíhalo ve čtyřech klíčových 

dimenzích na škále 1 (zcela správně/vhodně) až 3 (zcela chybně/nevhodně). Kritéria byla 

navržena tak, aby identifikovala specifické typy halucinací definované Huangem et al. (2023) 

a úroveň didaktické transformace: 

1. Věcná (obsahová) správnost (CK) – posuzuje stabilitu obsahové znalosti a přítomnost 

logických halucinací.  

Je podle návodu možné útvar narýsovat? Jsou respektovány geometrické axiomy 

a existenční podmínky? 

2. Terminologická a jazyková přesnost – hodnotí přítomnost terminologických halucinací 

(Huang et al., 2023).  
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Odpovídá použité názvosloví českým zvyklostem (např. rozdíl mezi kružnicí a kruhem) 

a jazyku odpovídající úrovně dle van Hieleho (Vojkůvková, 2012)? 

3. Didaktická srozumitelnost (PCK) – sleduje kvalitu didaktické transformace obsahu.  

Je text srozumitelný pro cílovou skupinu (žák 5. třídy)? Neobsahuje metodicky 

nevhodné postupy, které by u žáků budovaly miskoncepce? 

4. Logická integrita (Logická integrita) – hodnotí schopnost modelu udržet logickou linku 

v celém řetězci kroků (Frieder et al., 2023).  

Navazují instrukce na sebe, nebo model v průběhu generování „zapomněl“ výchozí 

parametry zadání? 

 

4. Testování modelů 

V následujících částech textu předkládáme relevantní doslovné přepisy generovaných 

odpovědí pro každý ze zkoumaných modelů. Pro zachování autenticity a možnosti expertní 

validace jsou výstupy ponechány v původním znění, včetně případných obsahových 

a terminologických nepřesností.  

Je však nutné zdůraznit, že v průběhu testování docházelo u všech modelů k opakovaným 

a kritickým halucinacím v momentech, kdy se systémy pokoušely o vizuální reprezentaci 

geometrických konceptů (např. pomocí ASCII artu, schémat nebo generovaných obrázků). Tyto 

vizualizace vykazovaly totální absenci prostorové logiky a absolutně neodpovídaly 

geometrické skutečnosti. Tento jev je přímým důsledkem technologické podstaty LLM, které, 

jak bylo uvedeno v teoretické části, fungují jako pravděpodobnostní prediktory textových 

tokenů, nikoliv jako modely disponující sémantickým pochopením prostoru nebo grafickou 

přesností.  

Vzhledem k tomu, že tyto grafické výstupy vykazovaly nulovou didaktickou hodnotu 

a jejich interpretace by byla pro žáka zavádějící, byly z popisu výsledků a následné analýzy 

u všech modelů vyloučeny. Šetření se tedy soustředí výhradně na textové konstrukční postupy 

a metodické instrukce, které představují klíčový prvek didaktické transformace obsahu. 

 

4.1.  Prompt P1 

„Ahoj, jsem student učitelství a připravuji si podklady pro výuku geometrie na 1. stupni ZŠ. 

Napiš mi prosím podrobný postup konstrukce trojúhelníku ABC, který má strany o délkách: 

a = 6 cm, b = 3 cm, c = 2 cm. Postup piš tak, aby byl srozumitelný pro žáka 5. třídy.“ 

4.1.1. ChatGPT-4o (doslovný přepis) 

Ahoj! Rád ti pomohu s konstrukcí trojúhelníku. Nicméně, podle trojúhelníkové nerovnosti 

nemůže existovat trojúhelník s délkami stran a = 6 cm, b = 3 cm a c = 2 cm, protože součet 

délek dvou kratších stran (b + c = 5 cm) musí být větší než délka nejdelší strany (a = 6 cm). 

Pokud chceš, mohu ti pomoci s konstrukcí trojúhelníku s jinými délkami stran, které splňují 

trojúhelníkovou nerovnost. Dej mi vědět, jaké délky bys chtěl použít! 

4.1.2. Copilot (Precise) (doslovný přepis) 

Nejdřív rychlá kontrola: Může takový trojúhelník existovat? 

Pravidlo (trojúhelníková nerovnost): 

Součet dvou kratších stran musí být větší než třetí (nejdelší) strana. 

• Máme: a = 6 cm, b = 3 cm, c = 2 cm 

• Součet kratších: 3 cm + 2 cm = 5 cm 

• Nejdelší: 6 cm 

Protože 5 cm není větší než 6 cm, takový trojúhelník neexistuje. 

Závěr: Trojúhelník s těmito délkami nelze sestrojit. 
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________________________________________ 

„Pokus o konstrukci“ – krok za krokem (aby žáci viděli, proč to nejde) 

Pomůcky: pravítko, kružítko, tužka. 

1. Narýsuj úsečku BC dlouhou 6 cm (to je strana a). 

2. Do kružítka vezmi 2 cm a opiš kružnici se středem v bodě B. 

(Hledáme bod A tak, aby AB = 2 cm.) 

3. Do kružítka vezmi 3 cm a opiš kružnici se středem v bodě C. 

(Současně má platit AC = 3 cm.) 

4. Podívej se, zda se kružnice protínají.  

• Vzdálenost středů B a C je 6 cm. 

• Součet poloměrů kružnic je 2 cm + 3 cm = 5 cm. 

• Když je součet poloměrů menší než vzdálenost středů, kružnice se neprotnou. 

5. Kružnice se neprotnou → neexistuje bod A, který by splnil obě podmínky (AB = 2 cm 

a AC = 3 cm). 

Závěr: Trojúhelník s těmito délkami nelze narýsovat. 

Žákovská pomůcka / analogie: 

Představ si tři špejle: 6 cm, 3 cm a 2 cm. Z těchto tří špejlí „trojúhelník“ nezavřeš, 

protože dvě kratší dohromady nedosáhnou na tu nejdelší. 

________________________________________ 

Jak to žákům vysvětlit jednoduše 

• „Dvě kratší strany dohromady musí být delší než ta dlouhá. Když nejsou, tvar se 

nezavře.“ 

• „Kružítka se musí potkat. Když se dvě kružnice nepotkají, chybí nám třetí vrchol.“ 

________________________________________ 

Tip: Změň čísla a konstrukce půjde 

Např. a = 4 cm, b = 3 cm, c = 2 cm (tady 3 + 2 = 5 > 4, takže OK). 

Postup (SSS – všechny tři strany známe): 

1. Narýsuj úsečku AB dlouhou c = 2 cm. 

2. Se středem v A opiš kružnici s poloměrem b = 3 cm. 

3. Se středem v B opiš kružnici s poloměrem a = 4 cm. 

4. Průsečík kružnic označ C. 

(Pokud jsou dva průsečíky, vyber jeden — vzniknou dvě „zrcadlové“ možnosti.) 

5. Spoj AC a BC. Máš trojúhelník ABC. 

6. Kontrola: Změř pravítkem AB (2 cm), AC (3 cm), BC (4 cm). 

________________________________________ 

Didaktické tipy 

• Nechte děti nejdřív zkusit odhad: „Bude tohle možné?“ a použijte pravidlo sečtení 

kratších stran. 

• Pak udělejte „pokus o konstrukci“, aby viděly, že se kružnice nepotkají. 

• Krátká praktická aktivita: tři provázky/špejle (6, 3, 2 cm) a pokusit se je spojit do 

trojúhelníku – nejde to. 

________________________________________ 

Pokud chceš, připravím ti k tomu pracovní list nebo jednoduchý obrázek k vytištění (PDF), 

kde budou: 

• pravidlo trojúhelníkové nerovnosti, 

• „pokus o konstrukci“ s obrázkem, 

• a jeden „správný“ příklad k narýsování. 

Chceš raději jednu stránku A4 nebo krátkou prezentaci (PowerPoint)? 
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4.1.3. Google Gemini 2.0 Flash (doslovný přepis) 

Ahoj! Bohužel, takový trojúhelník nelze sestrojit. Součet dvou kratších stran (b + c) musí 

být větší než délka nejdelší strany (a). V tomto případě 3 cm + 2 cm = 5 cm, což je méně než 

6 cm. Trojúhelník se “nespojí”. 

Pokud bys chtěl/a postup pro trojúhelník, který sestrojit jde, dej mi vědět s novými délkami 

stran! 

4.1.4. Diskuse výsledků šetření P1 

První testovací úloha (P1) byla zaměřena na schopnost modelů identifikovat matematickou 

nemožnost konstrukce trojúhelníku v důsledku porušení trojúhelníkové nerovnosti (b + c < a). 

Z hlediska rámce TPACK tato úloha testovala především stabilitu složky Content Knowledge 

(CK) a schopnost její didaktické transformace (PCK). 

Výsledky šetření ukazují, že v této základní úrovni geometrického uvažování všechny tři 

testované modely uspěly v detekci chyby. Nedošlo k žádné logické halucinaci, při které by 

model generoval postup pro neexistující objekt, což indikuje výrazný posun oproti starším 

verzím LLM (srov. Frieder et al., 2023). 

• ChatGPT-4o: Prokázal vysokou úroveň CK. Chybu identifikoval okamžitě a jasně ji 

zdůvodnil. Z hlediska PCK je však výstup strohý – model pouze konstatuje nemožnost 

a nabízí pomoc s jiným zadáním. Pro studenta učitelství představuje tento výstup 

bezpečnou „pojistku“, ale nenabízí žádnou přidanou didaktickou hodnotu pro výuku. 

• Copilot (Precise): Tento model vykázal nejvyšší úroveň didaktické kompetence. 

Nejenže chybu identifikoval, ale v souladu s moderními trendy v didaktice 

(Polák, 2019) ji využil jako „teachable moment“. Nabídl „pokus o konstrukci“, který 

žákům vizualizuje, proč kružnice nemohou vytvořit průsečík (třetí vrchol). Výstup 

obsahuje analogii se špejlemi, která odpovídá vizualizační úrovni (0) dle van Hieleho, 

a následně nabízí i správný příklad pro srovnání. Z hlediska metodiky jde o komplexní 

podklad pro vyučovací hodinu. 

• Gemini 2.0 Flash: Model reagoval věcně správně a velmi efektivně. Jeho vysvětlení, 

že se trojúhelník „nespojí“, je srozumitelné pro cílovou skupinu (5. třída). Stejně jako 

ChatGPT se však omezil na korekci zadání bez hlubšího didaktického rozpracování. 

V tabulce níže uvádíme průměrné skóre v jednotlivých dimenzích (1 = nejlepší, 3 = nejhorší): 

 

Tabulka 1. průměrné skóre LLM ve sledovaných dimenzích promptu P1 

Kritérium ChatGPT-4o Copilot (Precise) Gemini 2.0 Flash 

Věcná správnost (CK) 1 1 1 

Terminologická přesnost* 1 3 2 

Didaktická srozumitelnost (PCK) 2 1 2 

Logická integrita 1 1 1 

*Hodnocení terminologické přesnosti jednotlivých LLM je vzhledem k rozdílné délce 

vygenerovaných odpovědí velmi obtížné objektivně hodnotit. Odpověď modelu Copilot byla 

nesrovnatelně komplexnější, čímž vznikl mnohem větší prostor k matematicky nekorektnímu 

výstupu. Toto kritérium tak nebylo možné brát zcela v potaz. 

Z analýzy zbývajících kritérií se ukazuje, že pro budoucího učitele je v této fázi nejvíce 

přínosný model Copilot, který nejlépe simuluje roli zkušeného metodika. Modely ChatGPT 

a Gemini fungují spíše jako expertní korektoři, kteří sice zabrání věcné chybě (stabilní CK), ale 
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didaktickou transformaci (PCK) ponechávají plně na uživateli. Tento nález potvrzuje, že i při 

bezchybném výstupu AI zůstává role učitele jako designéra výuky (Koehler et al., 2013) 

nezastupitelná. 

 

4.2. Prompt P2 

Ahoj, jsem student učitelství a připravuji si podklady pro svou praxi pro výuku geometrie 

na 1. stupni ZŠ. Napiš mi prosím podklad pro žáky 5. třídy na téma obvod obdélníku. Úkol: 

Najdi všechny možné obdélníky, které mají obvod 16 cm a délky jejich stran jsou celá čísla. 

Požadavky: 1. Vysvětli žákům postup, jak jsi řešení hledal. 2. Uveď, zda jsi vyčerpal všechny 

možnosti. 

4.2.1. ChatGPT-4o  

Podklad pro žáky: Obvod obdélníku 

Úkol: Najdi všechny možné obdélníky, které mají obvod 16 cm a délky jejich stran jsou 

celá čísla. 

1. Vysvětlení postupu: 

Obvod obdélníku se počítá podle vzorce: 

[ O = 2 \times (a + b) ] 

Kde ( O ) je obvod, ( a ) je délka jedné strany a ( b ) je délka druhé strany. 

V našem případě je obvod (O = 16) cm. Dosadíme do vzorce: 

[ 16 = 2 \times (a + b) ] 

Zjednodušíme rovnici: 

[ 8 = a + b ] 

Musíme tedy najít všechny dvojice celých čísel ( a ) a ( b ), které splňují tuto rovnici. 

2. Vizuální znázornění řešení: 

Možné dvojice ( (a, b) ) jsou: 

 ( a = 1 ), ( b = 7 ) 

 ( a = 2 ), ( b = 6 ) 

 ( a = 3 ), ( b = 5 ) 

 ( a = 4 ), ( b = 4 ) 

Ano, vyčerpali jsme všechny možnosti. Pro každou dvojici ( a ) a ( b ) platí ( a + b = 8 ), 

kde ( a ) a ( b ) jsou celá čísla. Všechny možné kombinace jsme našli a znázornili. 

4.2.2. Copilot (Precise) 

Zde je podklad pro žáky 5. třídy k tématu obvod obdélníku na zadaný úkol. Je psaný přímo 

pro děti – můžeš ho vytisknout jako pracovní list nebo promítnout. 
_____________________________________________________ 

Pracovní list: Obvod obdélníku – Úkol s obvodem 16 cm 

Co je obvod obdélníku? 

Obvod obdélníku je délka „okraje“ (všech čtyř stran). 

Vzorec: O = 2 × (a + b), kde a a b jsou délky stran. 
_____________________________________________________ 

Zadání 

Najdi všechny možné obdélníky, které mají obvod 16 cm a délky jejich stran jsou celá čísla 

(v centimetrech). 
_____________________________________________________ 

Jak na to – postup krok za krokem (vysvětlení pro žáky) 

 Použij vzorec pro obvod: 

O = 2 × (a + b). Máme O = 16, tedy  

2 × (a + b) = 16 ⇒ a + b = 8. 
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Hledáme dvě celá kladná čísla, která sečtená dají 8. 

Začneme nejmenší možnou celou délkou a = 1 a k ní dopočítáme b = 8 – a. 

Postupuj systematicky: 

Zvyšuj a o 1 (1, 2, 3, 4, …) a vždy spočítej b = 8 – a. 

Zastav se, jakmile by a „přeskočilo“ b (protože obdélník s délkami a, b je stejný jako 

s délkami b, a). 

Zkontroluj každou dvojici: 

Pro jistotu u každé dvojice ověř: 2 × (a + b) = 16. 

________________________________________ 

Řešení (všechny dvojice celých čísel) 

Celá kladná čísla a, b s a + b = 8: 

 a = 1, b = 7 → obvod 2 × (1 + 7) = 16 

 a = 2, b = 6 → obvod 2 × (2 + 6) = 16 

 a = 3, b = 5 → obvod 2 × (3 + 5) = 16 

 a = 4, b = 4 → obvod 2 × (4 + 4) = 16 

Poznámka: Dvojice (5, 3), (6, 2), (7, 1) jsou stejné tvary „jen otočené“. Abychom neměli 

stejné obdélníky dvakrát, stačí uvést ty s a ≤ b. 

Jsou to opravdu všechny možnosti? 

Ano. Vysvětlení: 

 Víme, že a + b = 8 a a, b mají být celá kladná čísla (strana nemůže být 0). 

 Když systematicky projdeme a = 1, 2, 3, 4, dostaneme b = 7, 6, 5, 4. 

 Pro a = 5, 6, 7 bychom dostali jen stejné obdélníky, ale otočené (b = 3, 2, 1). 

 Proto jsou všechny různé tvary (bez ohledu na otočení) právě: 1 × 7, 2 × 6, 3 × 5, 4 × 4. 

________________________________________ 

Kontrolní otázky (pro sebe hodnocení) 

 Proč jsme rovnost 2 × (a + b) = 16 přepsali na a + b = 8? 

 Proč nebereme dvojici (0, 8)? 

 Který z nalezených obdélníků je čtverec? Proč? 

 Dokázal/a bys najít všechny obdélníky s obvodem 20 cm se stejným postupem? 

________________________________________ 

Tip (volitelné): Rozšíření pro zvídavé 

Zkus se zamyslet: mají nalezené obdélníky stejný obsah? (Obsah je S = a × b.) Který má 

největší obsah a proč? 

4.2.3. Google Gemini 2.0 Flash 

Ahoj! Tady máš podklad pro žáky 5. třídy na téma obvod obdélníku: 

Obvod obdélníku – hledači obdélníků 

Cíl: Naučit se vypočítat obvod obdélníku a hledat různé obdélníky se stejným obvodem. 

Pomůcky: Pravítko, tužka, papír, (volitelně) čtverečkovaný papír. 

Úvod: 

 Zopakujte si, co je to obdélník (čtyřúhelník se 4 pravými úhly, protilehlé strany jsou 

stejně dlouhé). 

 Zopakujte si, co je obvod (součet délek všech stran). 

 Připomeňte vzorec pro obvod obdélníku: O = 2 * (a + b), kde ‘a’ je délka jedné strany 

a ‘b’ je délka druhé strany. 

Úkol: 

Najděte všechny možné obdélníky, které mají obvod přesně 16 cm a délky jejich stran jsou 

celá čísla. 
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Postup: 

 Zjednodušení vzorce: Víme, že obvod je 16 cm, takže můžeme vzorec upravit: 

16 = 2 * (a + b). Když obě strany rovnice vydělíme 2, dostaneme: 8 = a + b. To znamená, že 

součet délek dvou sousedních stran musí být 8 cm. 

 Hledání dvojic čísel: Nyní hledáme všechny dvojice celých čísel, které dávají součet 8. 

Začneme systematicky: 

 Pokud je a = 1 cm, pak b = 7 cm (protože 1 + 7 = 8) 

 Pokud je a = 2 cm, pak b = 6 cm (protože 2 + 6 = 8) 

 Pokud je a = 3 cm, pak b = 5 cm (protože 3 + 5 = 8) 

 Pokud je a = 4 cm, pak b = 4 cm (protože 4 + 4 = 8) 

 Pokud bychom pokračovali dál (a = 5 cm), dostali bychom b = 3 cm, což už je obdélník, 

který jsme našli (pouze prohozené strany). 

 Závěr: Našli jsme 4 různé obdélníky s obvodem 16 cm a celočíselnými délkami stran: 

 1 cm x 7 cm 

 2 cm x 6 cm 

 3 cm x 5 cm 

 4 cm x 4 cm (což je čtverec!) 

Odpověď: Našli jsme všechny možnosti. Existují 4 různé obdélníky, které splňují zadané 

podmínky. 

Doplňkové aktivity: 

 Nakreslete si tyto obdélníky na čtverečkovaný papír. 

 Zkuste najít obdélníky s jiným obvodem. 

 Co kdyby délky stran mohly být i desetinná čísla? Kolik by bylo možností? 

Hodně štěstí s praxí! 

4.2.4. Diskuse výsledků šetření P2 

Druhá testovací úloha (P2) byla navržena k prověření pokročilejších aspektů „Pedagogical 

Content Knowledge“ (PCK). Cílem bylo zjistit, zda modely pracují s inkluzivním pojetím 

geometrických pojmů (zda zahrnou čtverec mezi obdélníky) a zda dokážou systematicky 

a úplně vyčerpat stavový prostor řešení u úlohy s obvodem 16 cm. 

Všechny tři zkoumané modely v této úloze prokázaly vysokou úroveň logické integrity. 

Žádný z modelů se nedopustil logické halucinace typu „zapomenutí zadání“ nebo výpočtové 

chyby při odvození vztahu a + b = 8. 

• ChatGPT-4o: Model zvolil ryze matematický, analytický přístup. Správně odvodil 

zjednodušený součet stran a nalezl všechny čtyři celočíselné kombinace. Z hlediska 

didaktiky je však jeho výstup neutrální; ačkoliv čtverec (4, 4) do seznamu zahrnul 

(inkluzivní přístup), nijak na tento fakt didakticky neupozornil. Pro studenta učitelství 

tak výstup představuje korektní klíč řešení, ale postrádá metodický komentář k pojmové 

hierarchii. 

• Copilot (Precise): Tento model opět potvrdil svou orientaci na školní praxi. Výstup 

transformoval do podoby komplexního pracovního listu. Velmi cenným prvkem 

z hlediska didaktiky je zařazení kontrolní otázky: „Který z nalezených obdélníků je 

čtverec? Proč?“. Tímto krokem model aktivně podporuje přechod žáka na 2. úroveň dle 

van Hieleho (abstrakce), kde dochází k pochopení vztahů mezi vlastnostmi obrazců 

(Vojkůvková, 2012). Systém také metodicky správně vysvětlil, proč stačí uvést pouze 

čtyři dvojice a vyhnout se duplicitám vzniklým v důsledku komutativity. 

• Google Gemini 2.0 Flash: Model Gemini se v této úloze projevil jako didakticky 

nejpřesnější. Nejenže nalezl všechna řešení, ale u varianty obdélník o stranách 4 cm a 4 

cm explicitně a v kontextu výpočtu uvedl poznámku „(což je čtverec!)“. Tím přímo 
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naplňuje požadavek na inkluzivní klasifikaci (De Villiers, 1998). Gemini také jako 

jediný model doplnil „Doplňkové aktivity“ (práce s čtverečkovaným papírem, úvaha 

o desetinných číslech), což svědčí o vysoké úrovni didaktické flexibility. 

 

Tabulka 2. průměrné skóre LLM ve sledovaných dimenzích promptu P2 

Kritérium ChatGPT-4o Copilot (Precise) Gemini 2.0 Flash 

Věcná správnost (CK) 2 2 2 

Inkluzivní pojetí (VO3) 2 (implicitní) 1 (explicitní v otázce) 1 (explicitní v textu) 

Didaktická srozumitelnost 

(PCK) 2 1 1 

Úplnost řešení 1 (4/4) 1 (4/4) 1 (4/4) 

 

Analýza úlohy P2 ukazuje, že současná generace LLM (v testovaných verzích) již netrpí 

neschopností systematického prohledávání u jednodušších kombinatorických úloh. Klíčovým 

nálezem je, že modely Copilot a Gemini aktivně integrují inkluzivní definice, což je pro budoucí 

učitele zásadní. Pokud by model čtverec vynechal, fixoval by u studenta i žáka častou 

miskoncepci, že čtverec a obdélník jsou izolované pojmy bez vzájemného inkluzivního vztahu. 

Z hlediska TPACK modely v této úloze prokázaly efektivní synergii mezi technologickou 

formou a hlubokým didaktickým obsahem. U všech modelů však nadále zůstává velmi 

problematická symbolická a terminologická správnost odpovědí 

 

5. Závěr 

Předkládaná studie podrobila kritické analýze tři dominantní jazykové modely (GPT-4o, 

Copilot, Gemini 2.0 Flash) v kontextu přípravy materiálů pro konstrukční geometrii na 1. stupni 

ZŠ. Výsledky šetření ukazují na významný posun v matematické spolehlivosti LLM, ale 

zároveň odhalují přetrvávající limity v oblasti didaktické a kulturní integrity. 

Klíčová zjištění lze shrnout do dvou stěžejních bodů: 

1. Logická a pojmová stabilita: Modely vykazují vysokou úspěšnost v detekci 

matematických sporů (trojúhelníková nerovnost) a v moderním inkluzivním pojetí klasifikace 

geometrických objektů (klasifikace čtverce jako obdélníku). V této rovině se LLM stávají 

validním partnerem pro brainstorming studentů. 

2. Terminologický a kulturní nesoulad: Výstupy jsou silně ovlivněny anglosaskou 

symbolikou a při snaze o didaktické zjednodušení sklouzávají k terminologické nepřesnosti, 

která je v rozporu s českými zvyklostmi. 

Z výzkumu vyplývá, že pro budoucí učitele 1. stupně je nezbytné rozvíjet tzv. kritickou 

technologicko-obsahovou znalost. Umělá inteligence v současné fázi vývoje nemůže sloužit 

jako autonomní generátor hotových edukačních materiálů, ale pouze jako „hrubý asistent“, 

jehož výstupy vyžadují důslednou expertní lokalizaci a validaci. 

Hlavním přínosem práce je upozornění na fakt, že v éře AI neklesá význam hluboké 

oborové a didaktické přípravy studentů; naopak, tato erudice se stává jedinou funkční pojistkou 

proti šíření technologicky generovaných miskoncepcí v primárním vzdělávání. Další výzkum 

by se měl zaměřit na efektivitu cíleného promptingu (tzv. chain-of-thought) při eliminaci 

zjištěných terminologických nepřesností. 
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